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Reinforcement learning (RL) holds great promise for enabling autonomous acquisition of complex robotic
manipulation skills, but realizing this potential in real-world settings has been challenging. We present a
human-in-the-loop vision-based RL system that demonstrates impressive performance on a diverse set
of dexterous manipulation tasks, including dynamic manipulation, precision assembly, and dual-arm
coordination. Our approach integrates demonstrations and human corrections, efficient RL algorithms,
and other system-level design choices to learn policies that achieve near-perfect success rates and fast cycle
times within just 1 to 2.5 hours of training. We show that our method significantly outperforms imitation
learning baselines and prior RL approaches, with an average 2x improvement in success rate and 1.8x faster
execution. Through extensive experiments and analysis, we provide insights into the effectiveness of our
approach, demonstrating how it learns robust, adaptive policies for both reactive and predictive control
strategies. Our results suggest that RL can indeed learn a wide range of complex vision-based manipulation
policies directly in the real world within practical training times. We hope this work will inspire a new
generation of learned roboticmanipulation techniques, benefiting both industrial applications and research
advancements. Videos and code are available at our project website https://hil-serl.github.io/.

1. Introduction
Manipulation is one of the foundational problems in robotics, and achieving human-level performance
on dynamic, dexterous manipulation tasks is a longstanding pursuit in the field (Cui and Trinkle, 2021).
Reinforcement learning (RL) holds the promise of enabling autonomous acquisition of complex and dexterous
robotic skills. By learning through trial and error, an effective RL method should in principle be able to
acquire highly proficient skills that are tailored to the particular physical characteristics of the deployment
task. This could result in performance that not only exceeds that of hand-designed controllers but also
surpasses human teleoperation. However, realizing this promise in real-world settings has been challenging
due to issues with sample complexity, assumptions (e.g., accurate reward functions), and optimization
stability. RL methods have been effective for training in simulation (Hwangbo et al., 2019; Lee et al., 2020;
Chen et al., 2023; Loquercio et al., 2021), and for training on existing large real-world datasets with the aim of
broad generalization (Kalashnikov et al., 2018; 2021). They have also been used with hand-designed features
or representations for narrowly tailored tasks (Theodorou et al., 2010; Chebotar et al., 2016). However,
developing general-purpose vision-based methods that can efficiently acquire physically complex skills, with
proficiency exceeding imitation learning and hand-designed controllers, has been comparatively difficult.
We believe that making fundamental progress on this front can unlock new opportunities, which will then
enable the development of truly performant robotic manipulation policies.

In this paper, we develop a reinforcement learning (RL) system for vision-based manipulation that can
acquire a wide range of precise and dexterous robotic skills. Our system, named Human-in-the-Loop Sample-
Efficient Robotic Reinforcement Learning (HIL-SERL), addresses the previously mentioned challenges by
integrating a number of components that enable fast and highly performant vision-based RL in the real
world.

To address the optimization stability issue, we employ a pretrained visual backbone for policy learning.
To handle the sample complexity issue, we utilize a sample-efficient off-policy RL algorithm based on
RLPD (Ball et al., 2023) that also incorporates human demonstrations and corrections. Additionally, a
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Figure 1: Overview of experimental tasks. A subset of tasks considered in this paper, they include whipping out a
Jenga block from its tower, flipping an object in a pan, assembling complex devices such as a timing belt, a dashboard,
a motherboard, and an IKEA shelf.

well-designed low-level controller is included to ensure safety during policy training. During training, the
system queries a human operator for potential corrections, which are then used to update the policy in an
off-policy manner. We found this human-in-the-loop correction procedure is crucial for enabling the policy
to learn from its mistakes and improve performance, particularly for challenging tasks considered in this
paper, which are hard to learn from scratch.

As shown in Fig. 1, the tasks our system solves include dynamically flipping an object in a pan, whipping
out a Jenga block from a tower, handing over objects between two arms, and assembling complex devices
such as a computer motherboard, an IKEA shelf, a car dashboard, or a timing belt, using either one or
two robotic arms. These tasks present significant challenges in terms of complex and intricate dynamics,
high-dimensional state and action spaces, long horizons, or combinations thereof. Some of these skills
were previously considered infeasible to train with RL directly in real-world settings, such as many of
the dual-arm manipulation tasks, or nearly insurmountable with current robotics methods, like timing
belt assembly or Jenga whipping. And they require different types of control strategies, such as reactive

2



HIL-SERL: Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning

closed-loop control for precise manipulation tasks or delicate open-loop behaviors that are otherwise very
difficult to prescribe, e.g., Jenga whipping. However, perhaps the most surprising finding is that our system
can train RL policies to achieve near-perfect success rates and super-human cycle times on almost all of the
tasks with only one hour to 2.5 hours of training time in the real world. Our trained RL policies greatly
outperform imitation learning methods that are trained on the same amount of human data, e.g., same
number of episodes of demonstrations or corrections, on average 101% improvement in terms of success
rate and 1.8x faster in cycle time. The result is significant because it demonstrates that RL can indeed
learn a wide range of complex vision-based manipulation policies directly in the real world within practical
training times, which was previously considered infeasible with earlier methods. Moreover, RL does so
with a superhuman level of performance that greatly exceeds that of imitation learning and hand-designed
controllers.

To assess the effectiveness of our system, we compare it against several state-of-the-art RL methods and
conduct ablation studies to understand the contribution of each component. The results demonstrate that our
system not only outperforms the relevant baselines but also highlights that the impressive empirical results
are indeed due to the careful integration of these components. Additionally, we provide a comprehensive
analysis of the empirical results, offering insights into the effectiveness of RL-based manipulation. This
analysis explores why RL achieves a near-perfect success rate, and further examines the flexibility of RL
policies to serve as a general-purpose vision-based policy for acquiring distinct types of control strategies.

In summary, our contributions demonstrate that with the appropriate system-level design choices, RL
can effectively solve a wide range of dexterous and complex vision-based manipulation tasks in the real
world. Notably, our system is, to the best of our knowledge, the first to achieve dual-arm coordination
with image inputs using RL in real-world settings, as well as tasks like whipping out a Jenga block and
assembling a timing belt. We also provide a comprehensive analysis of the empirical success of RL-based
manipulation, offering insights into the effectiveness of RL-based manipulation. This analysis shapes our
understanding of why RL succeeds in these complex tasks and suggests potential directions for further
extending RL-based manipulation to even more challenging scenarios.

With the results presented in this paper, we hope this work will serve as a stepping stone for future
learning-based robotic manipulation research, and in the long term, could enable robust deployable robotic
manipulation skills capable of adapting to diverse environments and tasks, bringing us closer to the goal of
general-purpose robotic manipulation.

2. Related Work
The proposed system uses RL to solve dexterous manipulation tasks, thus we survey related works on
real-world robotic RL methods and systems, as well as other approaches that address similar dexterous
manipulation tasks.

Algorithms and systems for real-world RL Real-world robotic reinforcement learning (RL) requires
algorithms that are sample-efficient in handling high-dimensional inputs such as onboard perception and
supporting easy specification of rewards and resets. Several algorithms have demonstrated the ability to
learn efficiently directly in the real world (Riedmiller et al., 2009; Levine et al., 2016; Luo et al., 2021; Yang
et al., 2020; Zhan et al., 2021; Tebbe et al., 2021; Popov et al., 2017; Luo et al., 2019; Zhao et al., 2022; Hu et al.,
2024b; Johannink et al., 2019; Hu et al., 2024a; Rajeswaran et al., 2018; Schoettler et al., 2020; Luo et al., 2024a).
These include variants of off-policy RL (Kostrikov et al., 2023; Hu et al., 2024b; Luo et al., 2023), model-based
RL (Hester and Stone, 2013; Wu et al., 2022; Nagabandi et al., 2019; Rafailov et al., 2021; Luo et al., 2018),
and on-policy RL (Zhu et al., 2019). Despite progress, these often require long training times. Our system
achieves super-human performance on complex tasks with shorter training times. Other works have been
researching on inferring rewards from raw visual observation through success classifiers (Fu et al., 2018; Li
et al., 2021), foundation-model-based rewards (Du et al., 2023; Mahmoudieh et al., 2022; Fan et al., 2022),
and rewards from videos (Ma et al., 2023b;a). Additionally, to enable autonomous training, there have been
a number of algorithmic advances in reset-free learning (Gupta et al., 2021; Sharma et al., 2021; Zhu et al.,
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2020; Xie et al., 2022; Sharma et al., 2023) that require minimal human interventions during training. While
we do not introduce new algorithms in these areas, our framework effectively integrates existing methods.
As detailed in the methods section, using binary classifier-based rewards with demonstrations is effective
for the complex tasks in this paper.

One of the most relevant works to our research is SERL (Luo et al., 2024a), which also presents a system
for training reinforcement learning (RL) policies for manipulation tasks. Our approach differs from SERL
in that: we incorporate both human demonstrations and corrections to train RL policies, whereas SERL
relies solely on human demonstrations. While this might appear to be a minor distinction, our results
indicate that integrating corrections is crucial for enabling the policy to learn from its mistakes and improve
performance, especially for tasks that are challenging for the agent to learn from scratch. Additionally,
SERL focuses on simpler tasks with relatively short horizons and does not address dual-arm coordination or
dynamic manipulation. Our unique contribution is demonstrating that our approach can effectively learn
general-purpose vision-based manipulation policies across a wide range of tasks with varying physical
characteristics, setting our system fundamentally different from prior work on SERL.

Dexterous robotic manipulation For some of the tasks considered in this paper, prior works have
explored alternative approaches. In insertion tasks, prior works have used model-based approaches (Tang
et al., 2016; Jin et al., 2021) and end-effector tooling mechanisms with passive compliance (Morgan* et al.,
2021; Su et al., 2022). These methods often rely on state-based models without perception or require
task-specific development, limiting robustness and adaptability. Another approach involves using visual
servoing in a multi-stage pipeline to align the robotic arm with the target, followed by search primitives for
insertions (Spector et al., 2022; Chang et al., 2024; Song et al., 2015). They also face challenges with feature
reliability and alignment precision. In contrast, our method employs a much tighter perception-action loop.
It learns task-relevant visual features and visuomotor policies in a closed-loop manner, crucial for many
of the reactive high-precision tasks. The learned policy can be viewed as an instance of output feedback
control from the controls perspective (Astrom and Murray, 2008).

There are also a number of works on tackling the dynamic manipulation tasks (Mason and Lynch, 1993)
considered in this paper. Kormushev et al. (2010) utilized a motion capture system and dynamic motion
primitives (Ijspeert et al., 2013) to learn flipping an object in the pan. However, our system directly uses
pixel inputs, which alleviates the need for precise motion capture systems while achieving significantly
higher success rates. Fazeli et al. (2019) proposed a learning method to push out Jenga block from its tower
in a quasi-dynamic manner. Our approach, however, employs a whip to dynamically remove the Jenga block,
presenting a more challenging task that requires a much more sophisticated control policy. Additionally,
while there are studies on flexible object manipulation, such as cable routing (Luo et al., 2024b; Jin et al.,
2019), tracing, or untangling (Viswanath et al., 2023; Shivakumar et al., 2023; Viswanath et al., 2022), the
timing belt assembly task in our paper demands reactive yet precise coordination between two arms to
dynamically adjust both the tensioner and the timing belt. This task is fundamentally different and more
challenging than previous works on cable manipulation.

3. Human-in-the-Loop Reinforcement Learning System
In this section, we provide a detailed description of the methods used in the paper. For an animated movie
summarizing the presented methods, please refer to the accommodating video.

3.1. Preliminaries and Problem Statement
Robotic reinforcement learning tasks can be defined via an MDP  = { ,, 𝜌, , 𝑟 , 𝛾 }, where 𝐬 ∈  is
the state observation (e.g., an image in combination with the robot’s proprioceptive state information),
𝐚 ∈  is the action (e.g., the desired end-effector twist), 𝜌(𝐬0) is a distribution over initial states,  is
the unknown and potentially stochastic transition probabilities that depend on the system dynamics, and
𝑟 ∶  × → ℝ is the reward function, which encodes the task. An optimal policy 𝜋 is one that maximizes
the cumulative expected value of the reward, i.e., 𝐸[∑𝐻

𝑡=0
𝛾
𝑡
𝑟(𝐬𝑡 , 𝐚𝑡)], where the expectation is taken with
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respect to the initial state distribution, transition probabilities, and policy 𝜋. In practice, the policy 𝜋(𝐚|𝐬) is
usually modeled as a Gaussian distribution parameterized by a neural network.

To implement reinforcement learning algorithms for robotic tasks, we must carefully select appropriate
state observation spaces  and action spaces . This involves choosing the right combination of cameras,
proprioceptive states, and corresponding robot low-level controllers. For all our tasks, we employ a sparse
reward function. This function makes a binary decision on whether a task is successful or not using a trained
classifier. In this setup, the optimization objective 𝐸[∑𝐻

𝑡=0
𝛾
𝑡
𝑟(𝐬𝑡 , 𝐚𝑡)] aims to maximize the probability of

success for each trajectory. Ideally, at convergence, the policy should succeed at every attempt.
Specifically, the core underlying RL algorithm that we build on is RLPD (Ball et al., 2023), which we

chose for its sample efficiency and ability to incorporate prior data. At each training step, RLPD samples
equally between prior data and on-policy data to form a training batch (Song et al., 2023). It then updates
the parameters of a parametric Q-function 𝑄𝜙(𝐬, 𝐚) and the policy 𝜋𝜃(𝐚|𝐬) according to the gradient of their
respective loss functions:

𝑄(𝜙)=𝐸𝐬,𝐚,𝐬′[(
𝑄𝜙(𝐬, 𝐚)−(𝑟(𝐬, 𝐚)+𝛾𝐸𝐚′∼𝜋𝜃

[𝑄 ̄
𝜙
(𝐬

′
, 𝐚

′
)]))

2

]
(1)

𝜋(𝜃)=−𝐸𝐬 [𝐸𝐚∼𝜋𝜃(𝐚)
[𝑄𝜙(𝐬, 𝐚)] + 𝛼(𝜋𝜃(⋅|𝐬)] , (2)

where 𝑄 ̄
𝜙
is a target network (Mnih et al., 2013), and the actor loss uses entropy regularization with an

adaptively adjusted weight 𝛼 (Haarnoja et al., 2018).

3.2. System Overview
Our system is composed of three major components: the actor process, the learner process, and the replay
buffer residing inside the learner process, all operating in a distributed fashion, as illustrated in Fig. 2. The
actor process interacts with the environment by executing the current policy on the robot and sends the data
back to the replay buffer. The environment is designed to be modular, allowing for flexible configuration of
various devices. This includes support for multiple cameras, integration of input devices like SpaceMouse
for teleoperation, and the ability to control a variable number of robot arms with different type of controllers.
A implemented reward function is required to assess the success of a task, which is trained offline using
human demonstrations. Inside the actor process, a human can intervene the robot by using a SpaceMouse,
which will then take over the control of the robot from the RL policy. We employ two replay buffers, one to
store offline human demonstrations, called the demo buffer, usually on the range of 20-30; the other one for
storing the on-policy data, called the RL buffer.

The learner process samples data equally from the demo and RL replay buffers, optimizes the policy
using RLPD, and periodically sends the updated policy to the actor process. In the remainder of this section,
we will provide details about the design choices we made for each component.

3.3. System Design Choices
The sample efficiency of the proposed system is crucial, as each minute of training to acquire data incurs
a cost. Therefore, the training time must remain within a practical range, particularly when handling
high-dimensional inputs like images. Additionally, the downstream robotic system must accommodate the
RL policy so to ensure a smooth and efficient learning process. For example, the actual low-level robot
controller would require great care, particularly for most of the precise contact-rich tasks where the robot
physically interacts with objects in the environment. Not only does this controller need to be accurate, but
it must also be safe enough that the RL algorithm can explore with random actions during training. Thus, to
develop such a system capable of performing sample-efficient policy learning in the real world, we made
following design choices.

Pretrained Vision Backbones To facilitate the efficiency of the training process, we utilize pretrained
vision backbones to process image data. While this approach is now a common practice in computer vision
for the purpose of robustness and generalization (Radford et al., 2021; Dosovitskiy et al., 2021; Kolesnikov
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Figure 2: Overview of HIL-SERL. This figure illustrates the architecture of HIL-SERL, which comprises three
primary components: the actor process, the learner process, and replay buffers. These components communicate
asynchronously to facilitate efficient data flow. The actor process receives updated policy parameters from the learner
process, interacts with the environment, and sends collected interaction data to the replay buffers. The environment
is modular, supporting various external devices and multiple robotic arms. A human operator can intervene via
teleoperation tools, such as a SpaceMouse. The learner process samples data evenly from two replay buffers and
updates the policy using RLPD. When gripper control is required, a grasp critic is additionally trained with DQN.

et al., 2020); in RL, this treatment offers additional benefits, such as optimization stability and exploration
efficiency (Yang and Wang, 2019; Du et al., 2020), making this approach particularly advantageous for real-
world robotic RL training. Our neural network architecture, illustrated in Fig. 2, processes multiple images
from cameras using the same pretrained vision backbone. Specifically, we utilize a ResNet-10 model (He
et al., 2015), pretrained on ImageNet (Deng et al., 2009), to generate output embeddings. These embeddings
are then concatenated and further integrated with processed proprioceptive information, facilitating a more
efficient and effective learning process.

Reward Function One crucial aspect of a reinforcement learning system is the reward function, which is
used to guide the learning process and determine the quality of the policy. While there are prior works
on utilizing reward shaping to accelerate the learning process (Ng et al., 1999; Florensa et al., 2018; 2017),
this procedure tends to be task-specific and time-consuming to design. In some complex tasks, it’s simply
not feasible to perform such reward shaping. We found that using a sparse reward function, alongside
human demonstrations and corrections, offers a straightforward and effective setup for a variety of tasks.
Specifically, we collect offline data and train a binary classifier for each task, which only grants a positive
reward upon task completion and zero otherwise.

Downstream Robotic System To accommodate the policy learning process, we made a few particularly
important design choices to the downstream robotic system. To facilitate spatial generalization, we represent
the robot’s proprioceptive state in a relative coordinate system, allowing for an ego-centric formulation.
Essentially, at the beginning of each training episode, the pose of the robot’s end-effector was randomized
uniformly within a pre-defined area in the workspace. The robot’s proprioceptive information is expressed
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with respect to the frame of the end-effector’s initial pose; the action output from the policy is relative to the
current end-effector frame. This procedure simulates physically moving the target when viewed relatively
from the frame attached to the end-effector. As a result, the policy can succeed even if the object moves or,
as in some of our experiments, is perturbed in the middle of the episode. For tasks involving dealing with
contact, we use an impedance controller with reference limiting in the real-time layer to ensure safety as
in (Luo et al., 2024a). For dynamic tasks, we directly command feedforward wrenches in the end-effector
frame to accelerate the robot arm, while it doesn’t perform closed-loop control around acceleration, we found
this simple open-loop control to be sufficient for considered tasks. For details regarding the observation
representation as well as the controller design, please refer to the supplementary material.

Gripper Control For tasks involving the control of grippers, we employ a separate critic network to
evaluate discrete grasping actions. Although this approach might initially seem like an additional overhead
or somewhat unconventional, it has proven to be highly effective in practice, particularly when combined
with human demonstrations and corrections. The discrete nature of gripper actions in our tasks makes
approximating them with continuous distributions more challenging, particularly in the complex tasks
considered in this paper. By using discrete actions, we simplify the training process and improve the overall
effectiveness of the reinforcement learning system. Specifically, we solve two separate MDPs in these
tasks, 1 = { ,1, 𝜌1,1, 𝑟 , 𝛾 } and 2 = { ,2, 𝜌2,2, 𝑟 , 𝛾 }, where 1 and 2 are the continuous and
discrete action spaces, respectively. They both take in the same state observations from the environment
such as images, proprioception, gripper status and so forth. The discrete action space 2 consists of all
possible discrete actions. For a single gripper, these actions are “open", “close", and “stay". If two grippers are
involved, the action space expands to 32 = 9 combinations, accounting for all possible actions each gripper
can take. The critic update for 2 follows standard DQN practice (Mnih et al., 2013) with an additional
target network to stabilize training as following:

(𝜃) = 𝔼𝐬,𝐚,𝐬
′

[(
𝑟 + 𝛾𝑄𝜃

′(𝐬
′
, argmax

𝐚
′

𝑄𝜃(𝐬
′
, 𝐚

′
)) − 𝑄𝜃(𝐬, 𝐚)

)

2

]

, (3)

where 𝜃′ is the target network, which can be obtained by Polyak averaging with current network param-
eters (van Hasselt et al., 2015). At training or inference time, we first query the continuous actions from
the policy in 1, and then query the discrete actions from the critic in 2 by taking the argmax over the
critic’s output; we then apply the concatenated actions to the robot.

3.4. Human-in-the-Loop Reinforcement Learning
With the system-level design choices in place, we now describe the human-in-the-loop procedure that we
use to accelerate the learning process. It is well established from the RL theory literature that the sample
complexity of learning an optimal policy is closely tied to the cardinality of the state and action spaces
as well as the task horizon (Jin et al., 2018; 2020; Azar et al., 2012; Kearns and Singh, 1998), assuming an
appropriate exploration policy. These factors collectively serve as proxies for the “upper bound" on the
complexity of tasks that can be feasibly solved. Specifically, increases in the size of the state/action spaces,
task horizon, or their combinations lead to a proportional rise in the number of samples required to learn an
optimal policy; eventually crossing a threshold where real-world training of RL policies becomes impractical.

To tackle this challenge in real-world robotics RL training, we incorporate human-in-the-loop feedback
to guide the learning process to help the policy explore more efficiently. Specifically, a human operator
supervises the robot during training and provides corrective actions when necessary, as illustrated in Fig. 2.

For an autonomous rollout trajectory from time step 𝑡0 to 𝑡𝑁 , a human can intervene at any time step 𝑡𝑖

where 𝑡0 ≤ 𝑡𝑖 < 𝑡𝑁 . During an intervention, the human takes control of the robot for up to 𝑁 steps. Multiple
interventions can occur within a single trajectory, as illustrated by the red segments in Fig. 2. When a
human intervenes, their action 𝑎𝑖𝑡𝑣 is applied to the robot instead of the policy’s action 𝑎𝑅𝐿. We store the
intervention data in both the demonstration and RL data buffers. However, we add the policy’s transitions
(i.e., the states and actions before and after the intervention) only to the RL buffer. This approach has proven
effective in enhancing policy training efficiency.
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This intervention is crucial in scenarios where the policy leads the robot to an unrecoverable or
undesirable state, or when it becomes stuck in a local optimum that would otherwise require a significant
amount of time to overcomewithout human assistance. This procedure is similar to that of HG-DAgger (Kelly
et al., 2018), where a human takes over the control of the robot to collect data when the policy is performing
poorly; but our approach uses these data to optimize the policy with reinforcement learning rather than
supervised learning, similar to Luo et al. (2023). In our setup, the human operator engages with a SpaceMouse
3D mouse to provide corrective actions to the robot.

In the beginning of the training process, the human intervenes more frequently to provide corrective
actions, gradually decreasing the frequency as the policy improves. In our experience, we note that the
policy improves faster when the human operator issues specific corrections while letting the robot explore
on its own otherwise.

3.5. Training Process
To articulate the training process of our system and assist readers in reproducing our results, we provide a
detailed walkthrough of the steps involved in each of our experiments.

First, we select cameras that are most suitable for the task. Wrist cameras are particularly useful
for facilitating the spatial generalization of the learned policy due to the ego-centric views they provide.
However, if wrist cameras alone cannot provide a full view of the environment, we also place several side
cameras. For all cameras, we perform image cropping to focus on the area of interest and resize the images
to 128x128 for the neural network to process.

Next, we collect data to train the reward classifier, which is a crucial step in defining the reward function
that guides the learning process. Typically, we gather 200 positive data points and 1000 negative data points
by tele-operating the robot to perform the task. This is approximately equivalent to 10 human trajectories,
assuming each trajectory takes about 10 seconds. Using our data collection pipeline, as detailed in the
supplementary code, it usually takes around 5 minutes to collect these data points. Additionally, we may
collect extra data to address any false negative and false positive issues with the reward classifier. The
trained reward classifier generally achieves an accuracy of greater than 95% in the evaluation data set.

We then collect 20-30 trajectories of human demonstrations solving the tasks and use them to initialize
the offline demo replay buffer. For each task, we either script a robot reset motion or let the human operator
manually reset the task at the beginning of each trajectory, such as the USB pick-insertion task. Finally,
we start the policy training process. During this phase, human interventions may be provided to the
policy if necessary, until the policy converges. It’s also important to note that we should avoid persistently
providing long sparse interventions that lead to task successes. Such an intervention strategy will cause
the overestimation of the value function, particularly in the early stages of the training process; which can
result in unstable training dynamics.

4. Experiment Results
In this section, we discuss our experiments. We first present the experimental setup and the results. We
then discuss these results and their implications.

4.1. Overview of Experiments
We conduct experiments across seven diverse tasks covering a range of distinct characteristics, as illustrated
in Fig. 3. These tasks encompass a range of manipulation challenges, including dynamic object manipulation
(e.g., flipping an object in a pan), precise and delicate manipulation (e.g., inserting an SSD into its matching
slot), combined dynamic and precise manipulation (e.g., inserting a component while the target is moving),
flexible object manipulation (e.g., assembling a timing belt) and multi-stage tasks with multiple sub-tasks
(e.g., assembling an IKEA shelf). We solve these tasks by utilizing either a single robot arm or a dual-arm
setup, together with various combinations of observations and actions.

The observation space can include images from wrist-mounted and side cameras, end-effector poses,
twists, forces/torques, and the current gripper status of both arms. For dynamic tasks, the action space
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directly commands feedforward wrenches in the end-effector frame, which can be roughly thought of as
desired accelerations.

For other tasks, the action space can include each arm’s 6D Cartesian twist target for the downstream
impedance controller, and discrete actions for controlling one or two grippers.

For all tasks, unless otherwise noted, we trained a binary classifier as reward detector, it takes images
from wrist and/or side cameras as inputs, and predicts whether the current state is a success or failure
completing the current task. To train such classifiers, we collect both positive and negative demonstrations
from human operators, we also collect additional potential false positive or false negative examples if
necessary. We include details of the training process for each task in the supplementary material. For tasks
involving grasping, we also include a small negative penalty for gripper actions to discourage the policy
from operating its grippers unnecessarily. Each task also uses either a scripted robot motion or manually
human reset to randomize the initial state of the task. Details for setup of each task and policy training can
be found in the supplementary material. In the remainder of this section, we will first describe each task in
detail, and present relevant results as well as comparisons to other state-of-the-art methods.

4.2. Description of Tasks
In this subsection, we will present descriptions of the tasks in our experiments. We pick our tasks to cover
broad range of manipulation challenges, including contact-rich dynamics, dual-arm coordination, flexible
object handling, and dynamic manipulation. Here we organize the tasks in a way that similar challenges are
presented together. We first present two tasks that require precise manipulation in a contact-rich setting,
followed by three tasks that require dual-arm coordination to solve hard tasks including flexible object
manipulation. We then proceed to two tasks that require dynamic manipulation. An illustration of each
task can be found in Fig. 3.

Motherboard Assembly The motherboard assembly task includes four subtasks: inserting a RAM card
into its matching slot, assembling a PCI-E SSD into the motherboard, picking up a free-floating USB cable
and inserting it into the slot, and securing the USB cable into a tight-fitting clip.

RAM Insertion In this task, the robot is supposed to insert a RAM card into the matching slot. The
process involves two main steps: it first needs to align the RAM card with the narrow openings on both
sides of the slot, then proceed with delicate downward motion with appropriate force to insert the RAM
card into the slot. The task is considered successful if the RAM card is fully inserted into the slot without
triggering the locking mechanism, allowing for easy reset. If desired, an additional downward force can be
applied after executing the trained policy to lock the RAM card in place. This task is challenging because
applying slightly excessive force can cause the RAM card to tilt within the gripper, leading to failure, while
insufficient force may result in the RAM card not being properly inserted into the slot. The RAM card is
assumed to be pre-grasped by the robot, though we also periodically place it back to a fixture and regrasp it
to introduce grasping variations.

SSD Assembly In this task, the robot is supposed to insert one side of the SSD into its matching slot
and then place the other side onto the fixture residing in the motherboard. The task is considered successful
if both sides of the SSD are properly mated into their counterparts. This task requires a gentle but precise
insertion strategy initially to avoid damaging the contact pins, followed by another precise motion to align
the other side with the supporting fixture. The SSD is assumed to be pre-grasped by the robot, though we
also periodically place it back to a fixture and regrasp it to introduce grasping variations.

USB Connector Grasp-Insertion In this task, a USB cable is freely placed on a table, and the robot is
supposed to grasp the USB connector part, insert it into the corresponding slot and release the gripper. This
task is considered successful if the USB connector is fully inserted into the slot and the gripper is released.
The difficulty lies in the variability in the initial placement of the USB cable, as does the uncertainty in the
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Figure 3: Illustrations of the tasks in our experiments. (A)-(E) A sequence of motherboard assembly tasks: SSD
installation, RAM insertion, USB cable grasping and insertion into a slot and a clip, and booting up the computer
to ensure motherboard functionality. (F) A manipulation sequence to assemble an IKEA furniture: the robot first
assembles two side panels, then installs the top panel onto the mounted side panels. (G) A manipulation sequence to
assemble a car dashboard, two robot arms first grasp the workpiece then align multiple pins to the slots. (H) Two arms
performing a coordinated handover task. (I) Two arms performing a timing belt installation task. (J) A manipulation
sequence of Jenga whipping task, where the robot needs to extract one Jenga piece from the tower without crashing it.
(K) The robot is flipping the object in the pan to the opposite side.

grasping pose; the policy must learn to account for such uncertainty during insertion. For example, if an
unsuitable grasp was executed, the policy might need to release the object and regrasp it to achieve a better
grasp pose.
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USB Cable Clipping This task assumes a USB cable is already plugged into the motherboard, and the
robot is tasked to pick up the remaining part of the cable and insert it into a tight-fitting organization clip.
The task is considered successful if the USB cable is fully inserted into the clip. The difficulty lies in the
variability of the deformable USB cable, as well as the tight insertion phase.

The Whole Assembly We also performed the whole assembly task by chaining the above four
subtasks together, using scripted motions to transition between subtasks. A video clip of the entire assembly
process can be found on our project website as well as in the supplementary material. The video demon-
strates that the computer successfully booted up after executing the whole assembly policy, validating the
effectiveness of our method in not only achieving task success but also performing the RL training process
gracefully without damaging these delicate components.

IKEA Assembly The IKEA assembly task involves assembling an IKEA shelf with four boards, and is
decomposed into three subtasks: the robot needs to first assemble the two side panels into a panel fixed
on the table, then mount the top panels into side panels after they are assembled. The task is considered
successful if all the pieces are properly assembled into the shelf. For all the subtasks, we assume the panels
are pre-grasped by the robot, however, we do periodically place them back to fixtures and regrasp them to
introduce grasping variations.

Side Panel Assembly In this task, the top part of the side panel is assumed to be pre-grasped by the
robot, though the grasping location can vary due to the heavy weight of the panel during the interactive
assembly process, and we do periodically regrasp them from the fixtures. The task is considered successful
if the bottom part is properly assembled onto the two matching pins.

Top Panel Assembly After two side panels are assembled, this task demands the robot to mount the
top panels onto both of the side panels. The task is considered successful if all four pins of the top panel
are properly inserted into the corresponding holes on the side panel. This task is difficult because the top
parts of the side panels can move around during the assembly process, and the policy must adapt to these
variations to succeed.

The Whole Assembly We also performed the whole assembly task by chaining the three trained
policies, using scripted motions to transition between subtasks, which is illustrated in Fig. 3 and the
supplementary material. For each subtask, we uniformly randomized the scripted grasping poses by 1 cm in
each translation dimension to introduce variations to the policy. This task is considered successful if all the
panels are assembled successfully, and each sub-policy is allowed for a maximum of two attempts. For this
task, we perform 10 trials for the chained policies, since it’s a very long-horizon task.

Car Dashboard Assembly As illustrated in Fig. 3, the car dashboard assembly task involves two stages:
both of the arms first need to grasp on appropriate locations of the workpiece and then lift it up, assemble
it onto the dashboard. The task is considered successful if all the pins of the workpiece are fully inserted
into the corresponding holes on the dashboard. This task requires precise manipulation as well as bimanual
coordination: the two arms must coordinate the timing of the motions and gripper closure to lift the
workpiece up, rotate it and align multiple pins at the same time.

Object Handover In this task, two robot arms are required to coordinate transferring an object from one
basket to the other. The right arm first picks up the object from a basket on the right side. Then, it hands
the object over to the left arm, which places it precisely into a basket on the left side. The task is considered
successful if the object is placed flat on the right basket. The handover part is challenging because the
robots’ grippers must coordinate the timing of the motions to prevent the object from falling down.
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Timing Belt Assembly In this task, two robot arms collaborate to assemble a timing belt onto pulleys
and actuate the tensioner. This task is part of the NIST board assembly challenge (Kimble et al., 2020). The
process involves locating and manipulating the randomly placed belt, coordinating precise motions to thread
the belt over two pulleys, and simultaneously actuating the tensioner to accommodate the belt. Success is
achieved when the belt is properly threaded onto both pulleys and the tensioner is securely tightened. This
task presents several challenges. The belt can deform unpredictably during the assembly process, requiring
adaptive manipulation. The arms must coordinate precisely, with carefully timed movements to thread
the belt effectively. The timing of tensioner adjustments is critical, as the tensioner must allow the belt to
be threaded while avoiding jamming. Throughout the process, the policy must continuously adjust to the
changing state of the flexible belt and the overall system configuration. The complexity of this task stems
from the need to handle a deformable object while precisely coordinating bimanual actions and managing
the tensioner mechanism. This requires the policy to develop sophisticated, reactive behaviors to succeed
consistently.

JengaWhipping In this task, the robot is supposed to whip out a specific block from a Jenga tower without
toppling over the tower. The nature of this task is largely different from the previous tasks, in that it
requires the robot to learn a highly dynamic open-loop behavior, as opposed to the reactive closed-loop
behavior required in the previous tasks. The dynamics of this task are intractably complex: the deformable
whip travels at a very high speed and interacts with the surrounding compressed air, making its motion
difficult to predict. Additionally, determining the precise force needed to remove a specific block without
destabilizing the entire tower introduces further complexity due to the intricate contact dynamics involved.
It is imperative for the policy to develop a reflex-like behavior by observing the outcomes of its own actions,
intuitive physics, and the interactions between the whip and the blocks. This allows the robot to execute
precise and consistent motions to successfully remove the target block without causing the tower to collapse.
Note for this specific task, we initialize an offline dataset with 30 expert demonstrations rather than using
real-time human corrections. This was chosen deliberately, as incorporating human feedback during training
would be both impractical and unsuitable given the task’s unique characteristics.

Object Flipping In this task, an object is randomly placed on a pan attached to the robot’s end-effector,
and the robot is tasked to flip the object over a horizontal axis. The task is considered successful if the
object is flipped to the opposite side and remains in the pan. Since the initial placement of the object is
randomized, the policy must learn to adapt to these variations, e.g., moving the object to a more favorable
position before executing the flip motion. The task’s nature is similar to the Jenga task, requiring precise
and sophisticated open-loop behaviors. However, it also involves a closed-loop component, as the policy
might need to reposition the object initially.

4.3. Experimental Results
In this subsection, we present the experimental results for all the tasks mentioned above. For each task, we
report the success rate, cycle time, and training time. The training time includes all scripted motion, policy
rollouts, intended stops, as well as onboard computation which is carried on a single NVIDIA RTX 4090
GPU. Unless otherwise noted, all results are based on 100 evaluation trials. During these evaluations, we
randomize the initial states using either scripted robot motions or human resets. Our evaluation protocol
can be found in the supplementary material.

A central claim of this paper is that HIL-SERL outperforms imitation learning methods based on human
teleoperation. To substantiate this, it is crucial to compare relevant imitation learning methods fairly
under equivalent settings. Naïve imitation learning approaches often suffer from error compounding issues,
as noted by (Ross et al., 2011). DAgger and its variants (Ross et al., 2011; Kelly et al., 2018) address this
problem by incorporating human corrections to refine the policy through supervised learning. Our method
also leverages human corrections, but instead utilizes them to optimize the policy through reinforcement
learning based on task-specific rewards. Therefore, we compare our approach to imitation learning by
training a baseline with HG-DAgger (Kelly et al., 2018), using the same amount of human demonstrations
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Training
Time (h)

Success Rate (%) Cycle Time (s)
Task BC HIL-SERL (ours) BC HIL-SERL (ours)

RAM Insertion 1.5 29 100 (+245%) 8.3 4.8 (1.7x faster)
SSD Assembly 1 79 100 (+27%) 6.7 3.3 (2x faster)

USB Grasp-Insertion 2.5 26 100 (+285%) 13.4 6.7 (2x faster)
Cable Clipping 1.25 95 100 (+5%) 7.2 4.2 (1.7x faster)

IKEA - Side Panel 1 2 77 100 (+30%) 6.5 2.7 (2.4x faster)
IKEA - Side Panel 2 1.75 79 100 (+27%) 5.0 2.4 (2.1x faster)
IKEA - Top Panel 1 35 100 (+186%) 8.9 2.4 (3.7x faster)

IKEA - Whole Assembly – 1/10 10/10 (+900%) – –
Car Dashboard Assembly 2 41 100 (+144%) 20.3 8.8 (2.3x faster)

Object Handover 2.5 79 100 (+27%) 16.1 13.6 (1.2x faster)
Timing Belt Assembly 6 2 100 (+4900%) 9.1 7.2 (1.3x faster)

Jenga Whipping 1.25 8 100 (+1150%) – –
Object Flipping 1 46 100 (+117%) 3.9 3.8 (1.03x faster)

Average – 49.7 100 (+101%) 9.6 5.4 (1.8x faster)

(a) Comparison of BC and RL success rates and cycle times for various tasks. All metrics were reported over 100 trials per task,
except for the IKEA whole assembly task, which involved 10 trials. For all tasks, BC baselines were trained using HG-DAgger with
the same number of episodes and interventions as RL. However, for the Jenga whipping and object flipping tasks, we used “flat" BC,
trained on 50 and 200 demonstrations, respectively.

Task DP HG-DAgger BC IBRL Residual RL DAPG
HIL-SERL

no demo no itv
HIL-SERL
no itv HIL-SERL (ours)

RAM Insertion 27 29 12 75 0 8 0 48 100
Dashboard Assembly 18 41 35 0 0 18 0 0 100
Object Flipping 56 46 46 95 97 72 0 100 100
Average 34 39 31 57 32 33 0 49 100

(b) Comparison of various methods on selected tasks. Diffusion Policy (DP) and BC are trained with 200 demonstrations, while
HG-DAgger is trained with the same number of episodes and interventions as RL. IBRL, Residual RL, and DAPG are initialized
with 200 demonstrations. Our method is also ablated with two versions: one initialized from scratch without demonstrations or
corrections, and another initialized from demonstrations but without corrections.

Table 1: Experiment results. (a) HIL-SERL against imitation learning baselines. (b) HIL-SERL against various other
baselines.

and corrections as used in reinforcement learning. We first pretrain a base policy with behavioral cloning
(BC) using an equivalent amount of offline human demonstrations as provided to our method. We then
run this policy and collect human expert corrections, such that the total amount of trials and interventions
matches RL training. Specifically, we run it for the same number of episodes as our method and aim to
provide a comparable number of interventions per episode.

This comparison is performed for all tasks except Jengawhipping and object flipping, where interventions
are challenging and undesirable. For these tasks, we instead collect 50 and 200 offline demonstrations and
train BC policies as baselines. This provides a significantly larger number of demonstrations than our
method, which typically requires only 20-30 demonstrations.

In all our experiments, we use success rates and cycle time as primary metrics to compare different
methods. To further validate the effectiveness of our approach, we also report the intervention rate over
time, demonstrating that our policy improves progressively, reducing the need for interventions. Ideally, the
intervention rate trends toward zero, indicating that the policy performs autonomously. The experiment
results can be found in Fig. 4 and Table. 1a.

First, as shown in Table. 1, HIL-SERL achieved a success rate of 100% within 1 to 2.5 hours of real-world
training on nearly all the tasks. This is a significant improvement over the HG-DAgger baseline, which
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Figure 4: Learning curves for experimental tasks. This figure presents the success rate, cycle time, and intervention
rates for both HIL-SERL and DAgger across few representative tasks, displayed as a running average over 20 episodes.
For HIL-SERL, the success rate increased rapidly throughout training, eventually reaching 100%, while the intervention
rate and cycle time progressively decreased, with the intervention rate ultimately reaching 0%. For HG-DAgger,
the success rate fluctuates throughout training episodes and does not necessarily increase as training progresses.
Since interventions occur frequently, leading to successful outcomes, the true policy success rate is likely lower than
the curve suggests. Additionally, the intervention rate does not consistently decrease over time, indicating that the
policy is not steadily improving. This is reflected in the cycle time as well, which shows no improvement, as DAgger
lacks a mechanism to enhance performance beyond the provided training data. Additional plots are available in the
supplementary material.

achieved an average success rate of 49.7% across all tasks. The performance gap is more pronounced for the
tasks that require more complex behaviors – Jenga whipping, RAM stick insertion, and timing belt assembly.

We also report the number of human interventions over time for nearly all of the tasks in Fig. 4.
Specifically, we report the intervention rate, for which we calculate the ratio of intervened timesteps to total
timesteps within an episode and report a running average over 20 episodes. As shown in the figure, the
intervention rate decreases as the training progresses, indicating that the policies are improving and less
reliant on human corrections. Additionally, we observe that the total duration of interventions decreases
dramatically. Initially, we issue long, sparse interventions when the policy is immature. As the policy
improves, shorter interventions are sufficient to correct fewer mistakes. In contrast, the HG-DAgger policies
require more frequent interventions to correct the policy, and the total duration of interventions does not
necessarily decrease over time. Thus, our method attains better performance with less human supervision.

Our method outperforms HG-DAgger due to key advantages of RL. RL explores a wider range of states
and directly optimizes task-specific rewards, while DAgger’s reliance on human corrections can introduce
inconsistencies and limit state exploration. As RL learns from its own state distribution and corrects errors
autonomously, it overcomes the constraints of human demonstrations, resulting in more robust policies.
These empirical findings align with theoretical results discussed in (Luo et al., 2023), which demonstrate
that reinforcement learning (RL) policies can in principle outperform DAgger. The performance gap tends
to widen as the suboptimality of human corrections increases, a scenario that is more likely to occur as
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Figure 5: Robustness evaluation for policies learned by our method. (A) RAM insertion under external
perturbations, such as a moving motherboard. (B) Retrying behavior during a handover task after the grippers are
forced open. (C-D) Reactive responses in the timing belt task, addressing both external disturbances and unexpected
deformations during execution. (E-F) In the dashboard assembly task, the policy performs re-grasps after one or both
grippers are forcibly opened. (G-H) In the USB grasp-insertion task, the policy adapts to external disturbances and
poor grasps by releasing and regrasping the object.

tasks become more complex.
Another important aspect to consider is the cycle time, or the time it takes to complete the task. On

average, the HG-DAgger policies achieve an average cycle time of 9.6 s, while our method achieves an
average cycle time of 5.4 s. This indicates an improvement of 1.8 times faster. This improvement is expected,
as imitation learning methods lack mechanisms to deal with suboptimality in human demonstrations. In
contrast, reinforcement learning (RL) can leverage dynamic programming to optimize for the discounted
sum of rewards. For a discount factor 𝛾 < 1, this approach encourages the policy to acquire rewards faster,
resulting in shorter cycle times compared to those achieved by imitating human demonstrations.

Out of these experiments, we would note that our method proves to be general and effective across tasks
with vastly different physical properties, generating both open-loop and closed-loop policies well suited
for each task’s specific requirements. For precise manipulation tasks, such as assembling a timing belt or
inserting a RAM stick, the policy learns to associate task-relevant visual features with appropriate twist
motions. It performs continuous visual servoing behavior, reacting to streaming observations in real-time
and adjusting its motion until reaching the target. In contrast, for tasks like Jenga whipping and object
flipping, the policy learns to predict potential outcomes of its actions through interaction.

It then precisely refines its motion to achieve the desired outcome while maintaining consistency in
execution. We also offer an in-depth analysis of the learned behavior, which we defer to the later section.

Overall, our experiments show that our method is both general and effective. It successfully learns
policies for a variety of challenging manipulation tasks using the same approach, achieving high performance
across all tasks. Additionally, it achieves such performance within practical training times, even for high-
dimensional observations and action spaces, such as those required for bimanual manipulation.

4.4. Robustness Results
To test the zero-shot robustness of policies learned by our method, we provide a set of qualitative results
in Fig. 5. These results demonstrate the policy’s ability to adapt dynamically to variations on the fly and
handle external disturbances, such as objects being intentionally dropped by a human from the gripper, or
cases where a human deliberately forces the gripper open during task execution. Corresponding video clips
can be found in our supplementary material and website https://hil-serl.github.io/

In the timing belt assembly task, the belt can undergo arbitrary deformation, and the policy is supposed
to adapt to these variations during the assembly process. Additionally, we introduce external disturbances
to the belt to further test the robustness of the policy. These disturbances include artificially perturbing
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the belt’s shape or repositioning it dynamically during the assembly process, as in Fig. 5 (C) and (D). In the
RAM insertion task, the learned policy successfully inserts the RAM stick even when the target is moving
during the insertion process, thanks to the ego-centric representation of the proprioceptive observation, as
illustrated in Fig. 5 (A). For the car dashboard assembly and object handover tasks, after the policy grasps the
object, we force the gripper to open during task exectution. The policy reacts to this unexpected situation by
retrying to grasp the object and proceeding with the rest of the tasks, as presented in Fig. 5 (B), (E) and (F).
In the USB connector grasp-insertion task, we varied the initial pose of the USB connector and occasionally
forced it out of the gripper to simulate poor grasp poses. The policy adapted by releasing the connector and
regrasping it to achieve a better pose for insertion, as seen in Fig. 5 (G) and (H). These robust behaviors are
achieved through autonomous exploration during the RL training phase. For example, the policy learns
to associate the grasping pose with the downstream insertion task and regrasps the object if necessary.
However, these robust behaviors are usually hard to achieve with imitation learning methods, as they lack
this mechanism to autonomously explore and learn from the outcomes of their actions.

4.5. Additional Baseline Comparisons
To validate the effectiveness of design choices in our method, we conducted additional comparisons on
three representative tasks: car dashboard panel assembly (dual-arm coordination), RAM insertion (precise
manipulation), and object flipping (dynamic manipulation). We compare our approach against several
state-of-the-art methods to highlight different aspects of its performance. To illustrate the significance of
human interventions, we performed ablation studies varying the number of human demonstrations and
corrections. To showcase how effectively our method incorporates and leverages human demonstrations, we
compared against Residual RL (Johannink et al., 2019), DAPG (Rajeswaran et al., 2018), and IBRL (Hu et al.,
2024a). Additionally, we compare against Diffusion Policy (Chi et al., 2024), to ensure that the task difficulty
does not stem solely from multi-modality in human demonstrations. These comprehensive comparisons
serve to validate our method’s effectiveness and capabilities across diverse manipulation scenarios, results
are presented in Table. 1.

We first note that RL from scratch, without any demonstrations or corrections, achieved 0% success
rate on all tasks. To validate the importance of online human corrections, we increased the number of
demonstrations in the offline buffer of SERL tenfold, from the usual 20 to 200. However, without any online
corrections, this approach resulted in significantly lower success rates compared to HIL-SERL, including
a complete failure (0% success) on complex tasks such as the car dashboard assembly. This confirms the
crucial role of online corrections in facilitating policy learning. These results confirmed the crucial role of
both offline demonstrations and on-policy human interventions in guiding policy learning, especially for
complex manipulation tasks that require continuous reactive behaviors.

For the object flipping task, we trained BC policies using both 20 and 200 demonstrations. The results
from these two BC policies were quite similar, with success rates of 47% and 46%, respectively, even though
the number of demonstrations increased tenfold. This indicates that merely imitating human demonstrations
is insufficient to solve this task, even though it is largely open-loop.

Another important aspect to consider is how our method handles demonstrations compared to others.
To compare against the mentioned baselines, we collected 200 demonstrations for each task. Note this
number is substantially larger than the number of offline demonstrations in our method, which is usually
around 20-30 in the offline replay buffer. For Residual RL and IBRL, we trained behavior cloning (BC)
policies with these demonstrations to feed into their algorithm pipeline. For DAPG, we stored these 200
demonstrations in a separate buffer and regularized the policy actions towards them. Overall, our method
consistently outperformed these baselines by large margins, as shown in Table. 1.

This can be interpreted as follows. Residual RL depends on a pre-trained BC base policy to facilitate the
learning process. However, this approach can be problematic for tasks that require precise manipulation,
such as car dashboard assembly or RAM insertion. In these scenarios, imitation learning methods, including
BC, often perform inadequately. As a result, the RL policy learning process can experience significant
failures. For IBRL, the actor is a hybrid of a BC policy and an RL policy, making the behavior more "BC-like."
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This approach struggles on tasks where BC performs poorly. For DAPG, since it directly regularizes the
policy actions towards the demonstrations, it is unsurprising that the policy performs similarly to the BC
policies. Therefore, it underperforms our method on tasks that require more reactive and complex behaviors.

The effectiveness of our method comes from the off-policy nature of the underlying RL algorithm,
which dynamically weights human data based on its relevance to the current policy optimization objective.
Different from Johannink et al. (2019); Hu et al. (2024a); Rajeswaran et al. (2018) which heavily relies on
the quality of human demonstrations, our method has a mechanism allows for efficient use of human data
early in training while enabling the agent to progressively surpass human-level performance. Crucially, it
prevents the agent from being constrained by the limitations of human demonstrations, striking a balance
between bootstrapping from demonstrations and discovering novel, superior strategies through autonomous
exploration.

To compare with the Diffusion Policy (Chi et al., 2024), We trained the policies using 200 demonstrations
for each task, which is substantially more than the 20 demonstrations available in the offline replay buffers
used by our method. We report the results using the experimented optimal algorithm parameters, such as
observation and action chunking length, and the length of the applied action sequence in the supplementary
material. On the RAM insertion and car dashboard panel tasks, diffusion policies achieved success rates
of 27% and 28%, respectively. On the object flipping task, the success rate is 56%. This performance is
significantly lower than our method and even falls short of the HG-DAgger baseline. This outcome is not
surprising, as the primary strength of diffusion policies is in learning a more expressive policy distribution
to accurately “memorize" robot motions. However, these tasks require more “closed-loop" reactive behaviors,
such as continuous visual servoing to correct motion errors. Therefore, the advantage of diffusion policies
in learning an expressive policy distribution does not necessarily lead to better performance in these tasks.

5. Result Analysis
To provide deeper insights into our results, we offer a detailed analysis of the learned policies. This
analysis focuses on two key aspects: reliability and learned behaviors. We examine why the learned policies
consistently achieve high success rates across diverse tasks, investigating the factors that contribute to their
robustness. Additionally, we delve into the nature of the behaviors acquired by the policies, particularly
exploring the distinction between reactive and predictive strategies. This comprehensive analysis aims to
shed light on the underlying mechanisms that contribute to the effectiveness of our approach in solving
complex manipulation tasks.

5.1. Reliability of the Learned Policies
One key aspect of HIL-SERL’s performance is its high reliability, achieving a 100% success rate across all
tasks. We argue this reliability comes from reinforcement learning’s inherent ability to self-correct through
policy sampling, allowing the agent to continuously improve by learning from both successes and failures. In
contrast, imitation learning approaches, including interactive methods, lack this self-correction mechanism,
making it significantly more challenging to achieve comparable performance with the same amount of data.
While there is existing theoretical work on the convergence of Q-learning (Papavassiliou and Russell, 1999;
Bhandari et al., 2018; Jin et al., 2020; Yang and Wang, 2019), our analysis focuses on providing an intuitive
understanding of the training dynamics.

To illustrate this, we analyze the RAM insertion task, which requires precise manipulation and is easily
visualized due to symmetrical randomization in the X and Y directions. We plot heatmaps of state visitation
counts across timesteps for different policy checkpoints in Fig. 6, based on the end-effector’s Y and Z
positions. Through policy learning, we observe the gradual development of a funnel-like shape connecting
the initial states to the target location. This funnel becomes more defined as empty regions are filled, and
narrows when approaching the target, indicating increased policy confidence and precision. Over time, the
mass concentrates in areas likely to succeed. We then introduce the concept of “critical states", defined as
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Figure 6: Visualization of policy training dynamics. (A) State visitation heatmaps during HIL-SERL training: The
policy progressively forms a “funnel" shape, concentrating more on areas around the demonstrations and corrections,
showing robustification in these regions. (B) Q-value variance heatmaps throughout training: States within the
funnel show increased Q-value variance, indicating that the policy is gaining greater confidence in actions that lead to
successful outcomes. (C) Q-value heatmaps across training: Critical states, marked by higher Q-value variance, are
also associated with high Q-values. (D) State visitation heatmaps during HG-DAgger training: The funnel shape is
less pronounced, with a flatter, more diffused distribution of visitation density.

states where the Q-function variance is large. We compute this variance using:

Var[𝑄(𝐬, 𝐚)] = 𝔼
𝜖∼ [−𝑐,𝑐] [(

𝑄(𝐬, 𝐚 + 𝜖) − 𝔼
𝜖∼ [−𝑐,𝑐]

(𝑄(𝐬, 𝐚 + 𝜖)))

2

]
(4)

For each datapoint and its associated policy checkpoint, we add uniform random noise from [-0.2, 0.2] to
the action (normalized to [-1, 1]) at every state and compute the Q-function variance using Monte Carlo
sampling with 100 samples. A large variance indicates that the state is critical to the policy’s success, as
taking a different action would result in significantly different (usually much smaller) Q-values. Fig. 6 also
shows heatmaps of Q-values and their variances at different states. These plots clearly demonstrate the
policy developing a funnel where the most visited states gain higher Q-values and higher Q-value variances.
This indicates that the policy is robustifying the region, effectively connecting important states with actions
leading to high Q-values through dynamic programming.

In contrast, the heatmap of state visitation counts for HG-DAgger on the same task (fourth row of
Fig. 6) shows a much sparser distribution. The funnel shape is less distinct, flatter, and the mass is more
spread out, with states visited more uniformly compared to the RL case. This is because RL can explore
autonomously and use dynamic programming directed by task rewards, while DAgger can only explore
around the current policy. Consequently, to achieve similar performance, DAgger may require significantly
more demonstrations and corrections, as well as careful attention from the human operator to ensure data
quality.

This type of stabilizing behavior within a funnel has been studied in state-based dexterous manipulation
and motion planning (Burridge et al., 1999; Tedrake et al., 2010). However, our approach differs in that we
directly leverage perceptual inputs and use RL exploration to autonomously form the funnel. An analogous
concept in optimal control is the development of controllers that stabilize around nominal trajectories using
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Figure 7: Reactive vs Predictive Behavior. (A-D) A sequence of reactive behaviors in the dashboard assembly task:
after getting stuck in contact, the policy breaks the contact by quickly lifting two arms, then re-establishing the contact
when approaching the target, finally succeeding in the insertion. (E) Variance plots from trained Gaussian policies
in the RAM insertion task, showing three trajectories. Initial variance is high but rapidly decreases as the target is
approached. (F)Mean plots from trained Gaussian policies in the RAM insertion task, with values ranging from -1
to 1. (G) Variance plots in the Jenga whipping task, remaining consistently low (near 0), indicating stable execution
and open-loop behavior. (H)Mean plots in the Jenga whipping task, with values between -1 and 1, demonstrating
consistent behavior across three trajectories.

local feedback (Astrom and Murray, 2008). In our case, demonstrations and corrections can be regarded as
“nominal trajectories" around which RL methods develop funnels for stabilization.

5.2. Reactive Policy and Predictive Policy
To solve most of the high-precision manipulation tasks, we need a closed-loop reactive policy that responds
rapidly to immediate sensory feedback, therefore enabling precise adjustments in real-time. On the other
hand, for the dynamic manipulation tasks, such as Jenga whipping and object flipping, it is desirable to
employ an open-loop predictive policy that plans ahead and execute the motion consistently. To see this,
we pick two representative tasks requiring these two different types of policies, Jenga whipping and RAM
insertion, for analysis. To visualize the differences between these policy types, we plot the computed actions
from the trained Gaussian policies for both tasks in Fig. 7.

For both tasks, we analyzed three successful trajectories by plotting the policies’ computed standard
deviation and mean over time. From these plots, we observe that while the mean actions cover a wide range
of values in both cases, the standard deviations reveal distinct policy behaviors. In the Jenga whipping
task, the standard deviation remains consistently low (very close to 0) across time steps. This indicates a
highly confident and consistent policy, ideal for tasks where open-loop behaviors are desirable. Similar to
a tennis player developing a reflex, the policy learns to execute a precise, pre-planned motion. Through
environmental interactions, it refines this motion to minimize prediction errors, resulting in consistent
execution. Conversely, the RAM insertion task exhibits a different pattern. Initially, the standard deviation
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is much higher (around 0.6), reflecting uncertainty when approaching the target early on. However, it
decreases rapidly over time, suggesting an initially coarse approaching motion that becomes more precise
when near the target. This task demands a reactive policy capable of error correction in various scenarios, as
predictive control over a long horizon is impractical due to the task’s precision requirements. This reactive
behavior is even more pronounced in complex manipulation tasks such as dashboard panel assembly or
timing belt installation. In these cases, the policy must continuously adjust its actions based on sensory
feedback, often requiring multiple attempts to achieve success, such as breaking contact and re-approaching
the target, as illustrated in Fig. 7. The higher variance in these scenarios indicates the policy’s readiness to
react swiftly to changing conditions.

It’s worthwhile to note that this type of reactive behavior is acquired by the agent through interacting
with the environment. In other words, the agent develops this behavior “for free" - we don’t explicitly
formulate the problem to solve for a specific dynamic behavior. Instead, the desired response emerges
naturally as part of the solution through ongoing interactions. Previous work Marcucci et al. (2017); Hogan
and Rodriguez (2016); Aceituno-Cabezas and Rodriguez (2020) have attempted to formulate these contact-
rich manipulation problems as mixed-integer programming for the resulting hybrid systems, which allows
the policy to plan different modes of contact and the accommodating motions. However, these methods
can quickly become computationally intractable as the planning horizon increases, since the number of
possible contact modes grows exponentially with the length of the planning horizon. Additionally, they
require accurate state estimators, which are not always available for many real-world tasks.

In contrast, our method directly leverages perception to learn reactive behaviors upon encountering
contact. Through interaction, it encodes essential dynamics required to find a solution, rather than treating
these dynamics as part of the problem formulation. Prior approaches, however, incorporate complex or
intractable dynamics within the problem formulation itself, making these solutions harder to derive and
less scalable.

Overall, our approach demonstrates the flexibility to learn these distinct policy types within a unified
algorithmic framework. By interacting with the environment and observing the outcomes of their actions,
the method adapts to the specific demands of each task. This adaptability enables the system to effectively
address tasks that require diverse behaviors, spanning a wide range of manipulation challenges.

6. Discussion
The presented results substantially advance the published state-of-the-art in robotic manipulation. Our
research demonstrates that with the right design choices, model-free RL can actually effectively tackle a
variety of complex manipulation tasks using perception inputs, directly training in the real world within
a practical timeframe. Trained policies from this approach are highly performant, achieving near-perfect
success rates and cycle times that are substantially faster than alternative approaches, such as imitation
learning.

Beyond the results themselves, the approach presented in this work can have significant broader impact.
It can serve as a general framework for acquiring a wide range of manipulation skills with high performance
and adapt to variations. This is particularly valuable in High-Mix Low-Volume (HMLV) manufacturing,
or “make-to-order" production (Jina et al., 1997; Shah and Ward, 2003; Gan et al., 2023). Such production
methods have substantial potential in major industries such as electronics, semiconductors, automotive, and
aerospace due to their need for shorter product life cycles, customization, agility, and flexibility.

We see a number of opportunities for future work. First, our approach can serve as an effective tool for
generating high-quality data to train robot foundation models (Brohan et al., 2023b;a; Collaboration et al.,
2024; Team et al., 2024; Kim et al., 2024). Given that each task requires a relatively short time to train and
the training process is largely autonomous, this framework can be employed to develop a variety of skills.
Subsequently, data can be collected by executing the converged policies, which can then be distilled into
these generalist models. Second, although the current training time is relatively short, each task still requires
training from scratch. We can further reduce this time by pretraining a value function that encapsulates
the general manipulation capabilities of solving a range of different tasks with distinct robot embodiments.
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This pretrained value function can then be quickly fine-tuned to address specific tasks.
We also see some limitations of our approach. Although we successfully address a variety of challenging

tasks, it remains uncertain whether this method can be further extended to tasks with significantly longer
horizons, where the sample complexity issue becomes more pronounced. However, this challenge might be
alleviated through improved pretraining techniques or by employing methods that automatically segment a
long-horizon task into a series of shorter sub-tasks, such as a vision-language model. It’s also important to
note that we did not perform extensive randomization in our experiments, nor did we test the method’s
generalization capability in unstructured environments. The primary focus of this paper is to demonstrate
that the approach can be general-purpose in acquiring a wide range of manipulation skills with high
performance. We believe that the randomization issue could be addressed by extending the training duration
of the policies with the desired randomization level as in Luo et al. (2021). Additionally, the generalization
issue might be resolved by incorporating vision foundation models that are pretrained on large scale diverse
datasets.

We hope this workwill pave theway for the use of reinforcement learning in solving robotic manipulation
problems, achieving high performance and eventually deploying them into the real world.
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Supplementary Materials
A. Task Setup and Policy Training Details
In this section, we provide details regarding how each task is set up, including hardware and software; as
well as details on policy training.

A.1. RAM Insertion
Fig. 8 shows the hardware setup for the motherboard assembly task, which presents the robot, the camera
placements, and the task arrangement.

Figure 8: Hardware setup for the motherboard assembly task.

A.1.1. Cropped Images
We cropped the images to focus on the task-relevant parts of the scene, as shown in Fig. 9.

Figure 9: Sample input images from cameras used as inputs to the policy.
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A.1.2. Policy Training Details
In Table 2, we report additional details of the policy training for this task.

Parameter Value
Observation space wrist_1, wrist_2, tcp_pose, tcp_vel, tcp_f/t
Action space 6D twist
Reward function Binary classifier
Classifier views wrist_1, wrist_2,
Classifier accuracy 97%
Initial offline demonstrations 20
Environment update frequency 10 HZ
Max episode length 100 environment steps
Reset method Scripted reset
Randomization range 4 cm in x and y, 6 deg in rz
Proprio encoder size 64
Policy MLP size 256x256
Total number of RL transitions 32000
Discount factor 0.97
Optimizer Adam
Learning rate 3e-4
Image augmentation Random crop

Table 2: Policy training details for the RAM insertion task.
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A.2. SSD Assembly
Fig. 8 shows the hardware setup for the motherboard assembly task, which presents the robot, the camera
placements, and the task arrangement.

A.2.1. Cropped Images
We cropped the images to focus on the task-relevant parts of the scene, as shown in Fig. 10.

Figure 10: Sample input images from cameras used as inputs to the policy.

A.2.2. Policy Training Details
In Table 3, we report additional details of the policy training for this task.

Parameter Value
Observation space wrist_1, wrist_2, side_2, tcp_pose, tcp_vel, tcp_f/t
Action space 6D twist
Reward function Binary Classifier
Classifier views wrist_1, wrist_2, side_2
Classifier accuracy 95%
Initial offline demonstrations 20
Environment update frequency 10 HZ
Max episode length 100 environment steps
Reset method Scripted reset
Randomization range 2 cm in x and y, 1 deg in rz
Proprio encoder size 64
Policy MLP size 256x256
Total number of RL transitions 21000
Discount factor 0.97
Optimizer Adam
Learning rate 3e-4
Image augmentation Random crop

Table 3: Policy training details for the SSD assembly task.
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A.3. USB Grasp-Insertion
Fig. 8 shows the hardware setup for the motherboard assembly task, which presents the robot, the camera
placements, and the task arrangement.

A.3.1. Cropped Images
We cropped the images to focus on the task-relevant parts of the scene, as shown in Fig. 11.

Figure 11: Sample input images from cameras used as inputs to the policy.

A.3.2. Policy Training Details
In Table 4, we report additional details of the policy training for this task.

Parameter Value
Observation space wrist_1, wrist_2, side_1, tcp_pose, tcp_vel, tcp_f/t, gripper_pos
Action space 6D twist and 1D discrete gripper control
Reward function Binary classifier
Classifier views side_1
Classifier accuracy 96%
Initial offline demonstrations 20
Environment update frequency 10 HZ
Max episode length 120 environment steps
Reset method Scripted reset
Randomization range 2 cm in x and y, 10 deg in rz
Proprio encoder size 64
Motion policy MLP size 256x256
Grasp critic MLP size 256x256
Total number of RL transitions 50000
Discount factor 0.98
Optimizer Adam
Learning rate 3e-4
Image augmentation Random crop

Table 4: Policy training details for the USB grasp and insertion task.
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A.4. Cable Clipping
Fig. 8 shows the hardware setup for the motherboard assembly task, which presents the robot, the camera
placements, and the task arrangement.

A.4.1. Cropped Images
We cropped the images to focus on the task-relevant parts of the scene, as shown in Fig. 12.

Figure 12: Sample input images from cameras used as inputs to the policy.

A.4.2. Policy Training Details
In Table 5, we report additional details of the policy training for this task.

Parameter Value
Observation space wrist_1, wrist_2, tcp_pose, tcp_vel, tcp_f/t, gripper_pos
Action space 6D twist and 1D discrete gripper control
Reward function Binary classifier
Classifier views wrist_1, wrist_2
Classifier accuracy 97%
Initial offline demonstrations 20
Environment update frequency 10 HZ
Max episode length 120 environment steps
Reset method Human reset
Randomization range 4 cm in x and y, 10 deg in rz
Proprio encoder size 64
Motion policy MLP size 256x256
Grasp critic MLP size 256x256
Total number of RL transitions 28000
Discount factor 0.98
Optimizer Adam
Learning rate 3e-4
Image augmentation Random crop

Table 5: Policy training details for the cable clipping task.
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A.5. IKEA - Side Panel
Fig. 13 shows the hardware setup for the IKEA assembly task, which presents the robot, the camera
placements, and the task arrangement.

Figure 13: Hardware setup for the IKEA furniture assembly task.

A.5.1. Policy Training Details
In Table 6, we report additional details of the policy training for this task.
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Parameter Value
Observation space for side panel 1 wrist_1, side_1, side_2, tcp_pose, tcp_vel, tcp_f/t
Observation space for side panel 2 wrist_2, side_3, side_4, tcp_pose, tcp_vel, tcp_f/t
Action space 12D twist
Reward function Binary Classifier
Classifier views for panel 1 side_1, side_2
Classifier views for panel 2 side_3, side_4
Classifier accuracy 97%
Initial offline demonstrations 20
Environment update frequency 10 HZ
Max episode length 100 environment steps
Reset method Scripted reset
Randomization range 8 cm in x, y, 1 deg in rz
Proprio encoder size 64
Policy MLP size 256x256
Total number of RL transitions for panel 1 31000
Total number of RL transitions for panel 2 36000
Discount factor 0.98
Optimizer Adam
Learning rate 3e-4
Image augmentation Random crop

Table 6: Policy training details for the IKEA side panel task.
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A.6. IKEA - Top Panel
Fig. 13 shows the hardware setup for the IKEA assembly task, which presents the robot, the camera
placements, and the task arrangement.

A.6.1. Policy Training Details
In Table 7, we report additional details of the policy training for this task.

Parameter Value
Observation space side_1, side_3, side_4, tcp_pose, tcp_vel, tcp_f/t
Action space 12D twist
Reward function Binary Classifier
Classifier views side_1, side_3, side_4
Classifier accuracy 95%
Initial offline demonstrations 20
Environment update frequency 10 HZ
Max episode length 150 environment steps
Reset method Scripted reset
Randomization range 3 cm in x, y
Proprio encoder size 64
Policy MLP size 256x256
Total number of RL transitions 18000
Discount factor 0.97
Optimizer Adam
Learning rate 3e-4
Image augmentation Random crop

Table 7: Policy training details for the IKEA top panel task.
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A.7. Car Dashboard Assembly
Fig. 14 shows the hardware setup for the dashboard installation task, which presents the robot, the camera
placements, and the task arrangement.

Figure 14: Hardware setup for the car dashboard installation task.

A.7.1. Cropped Images
We cropped the images to focus on the task-relevant parts of the scene, as shown in Fig. 15.

A.7.2. Policy Training Details
In Table 8, we report additional details of the policy training for this task.
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Figure 15: Sample input images from cameras used as inputs to the policy.

Parameter Value
Observation space wrist_1, wrist_2, side, tcp_pose, tcp_vel, tcp_f/t, gripper_pos
Action space 12D twist and 1D discrete gripper control
Reward function Binary classifier
Classifier views wrist_1, wrist_2, side
Classifier accuracy 98%
Initial offline demonstrations 20
Environment update frequency 10 HZ
Max episode length 200 environment steps
Reset method Human reset
Randomization range 2 cm in x and y
Proprio encoder size 64
Motion policy MLP size 256x256
Grasp critic MLP size 256x256
Total number of RL transitions 36000
Discount factor 0.97
Optimizer Adam
Learning rate 3e-4
Image augmentation Random crop

Table 8: Policy training details for the car dashboard assembly task.
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A.8. Object Handover
Fig. 16 shows the hardware setup for the object handover task, which presents the robot, the camera
placements, and the task arrangement.

Figure 16: Hardware setup for the object handover task.

A.8.1. Cropped Images
We cropped the images to focus on the task-relevant parts of the scene, as shown in Fig. 17.

Figure 17: Sample input images from cameras used as inputs to the policy.

A.8.2. Policy Training Details
In Table 9, we report additional details of the policy training for this task.
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Parameter Value
Observation space wrist_1, wrist_2, side, tcp_pose, tcp_vel, gripper_pos
Action space 12D twist and 1D discrete gripper control
Reward function Binary classifier
Classifier views side
Classifier accuracy 99%
Initial offline demonstrations 20
Environment update frequency 10 HZ
Max episode length 200 environment steps
Reset method Human reset
Randomization range None
Proprio encoder size 64
Motion policy MLP size 256x256
Grasp critic MLP size 256x256
Total number of RL transitions 43000
Discount factor 0.97
Optimizer Adam
Learning rate 3e-4
Image augmentation Random crop

Table 9: Policy training details for the object handover task.
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A.9. Timing Belt Assembly
Fig. 18 shows the hardware setup for the timing belt assembly task, which presents the robot, the camera
placements, and the task arrangement.

Figure 18: Hardware setup for the timing belt assembly task.

A.9.1. Cropped Images
We cropped the images to focus on the task-relevant parts of the scene, as shown in Fig. 19.

Figure 19: Sample input images from cameras used as inputs to the policy.

A.9.2. Policy Training Details
In Table 10, we report additional details of the policy training for this task.
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Parameter Value
Observation space wrist_1, wrist_2, side_1, side_2, tcp_pose, tcp_vel, tcp_f/t
Action space 12D twist
Reward function Binary classifier
Classifier views side_1, side_2
Classifier accuracy 96%
Initial offline demonstrations 20
Environment update frequency 10 HZ
Max episode length 200 environment steps
Reset method Human reset
Randomization range 2 cm in x and y
Proprio encoder size 64
Policy MLP size 256x256
Total number of RL transitions 108000
Discount factor 0.97
Optimizer Adam
Learning rate 3e-4
Image augmentation Random crop

Table 10: Policy training details for the timing belt assembly task.
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A.10. Jenga Whipping
Fig. 20 shows the hardware setup for the Jenga whipping task, which presents the robot, the camera
placements, and the task arrangement.

Figure 20: Hardware setup for the Jenga whipping task.

A.10.1. Cropped Images
We cropped the images to focus on the task-relevant parts of the scene, as shown in Fig. 21.

Figure 21: Sample input images from cameras used as inputs to the policy.

A.10.2. Policy Training Details
In Table 11, we report additional details of the policy training for this task.
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Parameter Value
Observation space wrist, global, tcp_pose, tcp_vel, q, dq
Action space Feedforward wrench 𝐹𝑥 , 𝐹𝑧 , 𝜏𝑧
Reward function Human annotation in the end of an episode
Environment update frequency 10 HZ
Max episode length 20 environment steps
Reset method Human reset
Randomization range None
Initial offline demonstrations 30
Proprio encoder size 64
Policy MLP size 256x256
Total number of RL transitions 10000
Discount factor 0.96, but every episode was run to maximum length
Optimizer Adam
Learning rate 3e-4, decayed to 3e-5 when reaching 70% success rate
Image augmentation Random crop

Table 11: Policy training details for the Jenga whipping task.
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A.11. Object Flipping
Fig. 22 shows the hardware setup for the object flipping task, which presents the robot, the camera placements,
and the task arrangement.

Figure 22: Hardware setup for the object flipping task.

A.11.1. Cropped Images
We cropped the images to focus on the task-relevant parts of the scene, as shown in Fig. 23.

Figure 23: Sample input images from cameras used as inputs to the policy.

A.11.2. Policy Training Details
In Table 12, we report additional details of the policy training for this task.
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Parameter Value
Observation space wrist, side, tcp_pose, tcp_vel, q, dq
Action space Feedforward wrench 𝐹𝑥 , 𝐹𝑧 , 𝜏𝑦
Reward function Binary classifier
Classifier views wrist
Classifier accuracy 97%
Initial offline demonstrations 20
Environment update frequency 10 HZ
Max episode length 100 environment steps
Reset method Scripted reset
Randomization range None
Proprio encoder size 64
Policy MLP size 256x256
Total number of RL transitions 25000
Discount factor 0.985
Optimizer Adam
Learning rate 3e-4
Image augmentation Random crop

Table 12: Policy training details for the object flipping task.
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B. Reward Classifier Training Details
For the reward classifiers, we used a pre-trained ResNet-10 model as the feature extractor, and connected it
to a two-layer MLP, and we then trained the network on the collected dataset with cross-entropy loss. The
classifier was trained using the Adam optimizer with a learning rate of 3e-4. The total number of training
iterations was 100.

To collect the training dataset, we teleoperated the robot to perform the task and recorded the images
and labels with a SpaceMouse. We clicked the SpaceMouse button when the robot successfully completed
the task, and marked those images with labels as 1. Otherwise, we marked the labels as 0. In some of
the tasks, we also recorded additional false positive and false negative samples to improve the classifier
performance. We represent a few such examples in Fig. 24 to help readers understand how to train such
classifiers.

Not fully inserted

Success

Inserted to wrong slot

Inserted to wrong slot Only inserted on one side

Not in the slot

Figure 24: Sample images collected to train the reward classifier for the RAM insertion task.
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C. Diffusion Policy Training Details
In this section, we provide detailed parameters for how we train the diffusion policy baselines, presented in
Table. 13.

Task
Name

Number of
Demos

Observation
Chunking Size

Action Prediction
Horizon

Action
Chunking Size

RAM Insertion 200 1 8 2
Dashboard Assembly 200 1 8 4

Object Flipping 200 1 1 1

Table 13: Diffusion policy training details.
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D. Robot Controller and Proprioceptive Information Representation
In this section, we detail the implementation of the robot controller and the representation of the proprio-
ceptive information for the robots.

D.1. Proprioceptive Information Representation

Let the robot’s base frame be {𝑠}; for the 𝑖-th episode of rolling out the policy, we denote {𝑏
(𝑖)

𝑡
} as the

end-effector frame expressed w.r.t. {𝑠} at a particular time step 𝑡; where 1 ≤ 𝑖 ≤ 𝑀 , 0 ≤ 𝑡 ≤ 𝑁 . For each
episode, {𝑏 (𝑖)

0
} is sampled from a uniform distribution specifying the area of randomization. We want to

express such proprioceptive information with respect to {𝑏
(𝑖)

0
}. Thus, the policy will be applicable to a new

location provided that the relative spatial distance between the robot’s end-effector and the target remains
consistent. This approach prevents overfitting to specific global locations within the reference frame {𝑠}.
We achieve this by applying the following homogeneous transformation:

𝑇
𝑏
(𝑖)

0
𝑏
(𝑖)

𝑡

= 𝑇
−1

𝑏
(𝑖)

0

⋅ 𝑇
𝑏
(𝑖)

𝑡

where we use 𝑇𝑎𝑏 to denote the homogeneous transformation matrix between frame {𝑎} and {𝑏}. We feed
the position and rotation information extracted from 𝑇

𝑏
(𝑖)

0
𝑏
(𝑖)

𝑡

to the policy. Here we use 𝑇𝑎𝑏 to denote the
homogeneous transformation matrix between frame {𝑎} and {𝑏}, defined as:

𝑇𝑎𝑏 =
[

𝑅𝑎𝑏 𝑝𝑎𝑏

01×3 1 ]
. (5)

For most of the tasks, the policy generates a six-degree-of-freedom (6 DoF) twist action, which is
expressed in the reference frame from which it currently receives observations, i.e., {𝑏(𝑖)

𝑡
}. Mathematically,

the 6 DoF twist action  (𝑖)

𝑡
is expressed in frame {𝑏(𝑖)

𝑡
} at timestep 𝑡. To interface with the robot’s control

software, which expects actions  (𝑖)

𝑡

′

expressed in the base frame {𝑠}, we apply the adjoint mapping:

 (𝑖)

𝑡

′

= [Ad(𝑖)
𝑡
]

−1

 (𝑖)

𝑡

where [Ad(𝑖)
𝑡
] is a function of the homogeneous transformation 𝑇

𝑏
(𝑖)

0

defined as:

[Ad(𝑖)
𝑡
] =

[

𝑅
𝑏
(𝑖)

𝑡

03×3

[𝑝
𝑏
(𝑖)

𝑡

] × 𝑅
𝑏
(𝑖)

𝑡

𝑅
𝑏
(𝑖)

𝑡

]

. (6)

For two dynamic manipulation tasks, the policy generates a 3 DoF feedforward wrench action, which
is also expressed in the reference frame from which it currently receives observations, i.e., {𝑏(𝑖)

𝑡
}. It will

then be sent to the low-level robot controller as setpoints, which then will be converted to joint torques for
execution by multiplying the transpose of the Jacobian matrix at the current timestep 𝑡.

D.2. Robot Controller
For most of the tasks, the low-level robot controller is an impedance controller running at 1000 Hz, which
accepts 10 Hz setpoints computed by the policy. As discussed in (Luo et al., 2024a), we perform additional
treatment on it to ensure the stability of the training process in most contact-rich manipulation tasks.
Consider a typical impedance controller without feedforward term:

𝐹 = 𝑘𝑝 ⋅ 𝑒 + 𝑘𝑑 ⋅ �̇� + 𝐹𝑓 𝑓 + 𝐹𝑐𝑜𝑟 , (7)

where 𝑒 = 𝑝−𝑝𝑟𝑒𝑓 , 𝑝 is the measured pose, and 𝑝𝑟𝑒𝑓 is the target pose computed by the upstream controller,
𝐹𝑓 𝑓 is the desired feedforward force, 𝐹𝑐𝑜𝑟 is the Coriolis force. This objective will then be converted into joint
space torques by multiplying Jacobian transpose and offset by nullspace torques. It acts like a spring-damper
system around the equilibrium set by 𝑝𝑟𝑒𝑓 with the stiffness coefficient being 𝑘𝑝 and the damping coefficient
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being 𝑘𝑑 . As described above, this system will yield large forces if 𝑝𝑟𝑒𝑓 is far away from the current pose,
which can lead to a hard collision or damage when the arm is in contact with something. Therefore it’s
crucial to constrain the interaction force generated by it. However, directly reducing gains will hurt the
controller’s accuracy. Thus, we should bound 𝑒 so that |𝑒| ≤ Δ, and then the generated force from the
spring-damper system will be bounded to 𝑘𝑝 ⋅ |Δ| + 2𝑘𝑑 ⋅ |Δ| ⋅ 𝑓 , 𝑓 is the control frequency.

For the two dynamic manipulation tasks, we run a feedforward wrench controller at 1000 Hz, which
accepts 10 Hz setpoints computed by the policy. It converts the desired wrench into joint torques by
multiplying the Jacobian transpose and offset by nullspace torques.
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E. Policy Training Plots
In this section, we provide additional plots for HIL-SERL policy training for all tasks.
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Figure 25: Learning curves for experimental tasks. This figure presents the success rate, cycle time, and
intervention rates for both HIL-SERL across all experiment tasks, displayed as a running average over 20 episodes.
The success rate increased rapidly throughout training, eventually reaching 100%, while the intervention rate and
cycle time progressively decreased, with the intervention rate ultimately reaching 0%.
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